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A wide range of investigations was carried out under this grant. The topics covered
by these investigations include vortex stability, vortex dynamics, flow interaction with to-
pography, coastal dynamics, suppression of aircraft trailing vortices, convective and mag-
netohydrodynamic instability, and others. The results from this work have been reported
in 11 refereed articles in prestigious journals, 10 articles in conference proceedings, and 37

‘formal presentations. The titles of these works are listed below, followed by an extended
abstract of the work. L
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Extended Abstract:

Numerical experiments are used to study the evolution of perturbed vortex tubes in a
rotating environment in order to better understand the process of two- dimensionalization
of unsteady, rotating flows. We specifically consider non- -axisymmetric perturbations to
‘columnar vortices aligned along the axis of rotation. The basic unperturbed vortex is
chosen to have a Gaussian cross-sectional vorticity distribution. The experiments cover
a parameter space in which both the strength of the initial perturbation and the Rossby
number are varied. The Rossby number is defined here as the ratio of the maximum am-
plitude of vorticity in the Gaussian vorticity profile to twice the ambient rotation rate.
For small perturbations and small Rossby numbers, both cyclones and anticyclones be-
have similarly, relaxing rapidly back toward two-dimensional columnar vortices. For large
perturbations and small Rossby numbers, a rapid instability occurs for both cyclones and
anticyclones in which antiparallel vorticity is created. The tubes breakup and then reform
again into columnar vortices parallel to the rotation axis (i.e. into a quasi- -two-dimensional
flow) through nonlinear processes. For Rossby numbers greater than one, even small per-
turbations result in the complete breakdown of the anticyclonic vortex through centrifugal
instability, while cyclones remain stable. For a range of Rossby numbers greater than one,
after the breakdown of the anticyclone, a new weaker anticyclone forms, with a small-scale



backgrouhd vorticity of spectral shapek given approximately by the -5/3 energy spectral
law. _

‘A vortex approaching a no-slip wall 'rebounds’ due to the creation of vorticity at the
wall in a viscous boundary layer. Here it is demonstrated that a purely inviscid mecha-
nism can also produce vortex rebound from a slip wall. In inviscid vortex rebound, vortex

tube stretching generates the necessary vorticity to allow rebound, eliminating the need for .

viscous vorticity generation. This vortex stretching mechanism is demonstrated through

numerical simulations and laboratory experiments on dipole-vortex rebound from a bound- - '

ary. In an application to oceanography, numerical simulations of both quasi-geostrophic

and shallow water dynamics are used to show that the S-effect at an eastern boundary can

produce this inviscid rebound. Through a series of numerical experiments in which the

strength of the S-effect is varied, a formula for predicting the point of separation of the

vortices from the boundary in a dipole-coast collision is deduced. Through simulations,
‘the flux of vorticity and fluid away from the boundary is measured as a function of B and
initial angle of incidence. It is found that, in contrast to viscous vortex rebound, which
typically does not produce a flux of material away from the boundary farther than a dis-
tance comparable to the initial vortex radius, the (-induced rebound does carry fluid far
from the coast. Laboratory experiments in a rotating tank are used to show that a sloping
bottom can also provide an inviscid mechanism for dipole-vortex rebound from the wall
of the tank under certain conditions. A relation determining the conditions under which
"‘inviscid or viscous processes will dominate in the rebound of the dipole from a boundary
is obtained. .

Laboratory experiments have shown that monopolar isolated vortices in a rotating flow
undergo instabilities that result in the formation of multipolar vortex states such as dipoles
and tripoles. In some cases the instability is entirely two-dimensional, with the vortices
being vortex columns aligned along the direction of the ambient rotation at all times. In

other cases, the vortex first passes through a highly turbulent three-dimensional state before

eventually reorganizing into vortex columns. Through a series of three-dimensional numeri-
cal simulations, the roles that centrifugal instability, barotropic instability, and the bottom
Ekman boundary layer play in these instabilities is investigated. Evidence is presented
that the centrifugal instability can trigger the barotropic instabilities by the enhancement

of vorticity gradients. It is shown that the bottom Ekman layer is not essential to these

instabilities but can strongly modify the evolution. : .

‘Laboratory observations and numerical experiments have shown that a variety of com-
pound vortices can emerge in two-dimensional flow due to the instability of isolated circular
vortices. The simple geometrical features of these compound vortices suggest that their
description may take a simple form if an appropriately chosen set of functions is used.
We employ a set which is complete on the infinite plane for vorticity distributions with
finite total enstrophy. Through projection of the vorticity equation (Galerkin method) and
subsequent truncation we derive a dynamical system which is used to model the observed

behavior in as simple as possible a fashion. It is found that at relatively low-order trunca-
tions the observed behavior is qualitatively captured by the dynamical system. We deter-
" mine what the necessary ingredients are for saturation of instabilities at finite amplitude

in terms of wave-wave interactions and feedback between various azimuthal components of

. the vorticity field. L ;
The evolution of a coastal current as it encounters an escarpment depends strongly on



whether the geometry of the coast and escarpment is right or left ‘handed,” independent
of the direction of the coastal current. ‘Handedness’ is defined such that ‘right-handed’
means that when looking across the escarpment from the deep to the shallow side, the
coast is found on the right. The essential aspects of the difference in behavior of the
current in the two geometries are captured by a simple quasi-geostrophic model of coastal
flow over a step. An exact analytic solution to the nonlinear stationary problem is obtained.
Numerical simulations are used to examine the evolution from the initial encounter to the
establishment of a stationary flow. The relevance of this research is discussed in light of
recent results from laboratory experiments and oceanic observations.

The buoyancy range, which represents a transition from large-scale wave-domlnated
motions to small-scale turbulence in the oceans and the atmosphere, is investigated through
large-eddy simulations. The model presented here uses a continual forcing based on large- -
scale standing internal-waves and has a spectral truncation in the isotropic inertial range.
Evidence is presented for a break in the energy spectra from the anisotropic &~ —3 buoyancy
range to the small-scale k~ 5/3 isotropic inertial range. Density structures that form during
wave breaking and periods of high strain rate are analyzed. Elongated vertical structures
produced during periods of strong straining motion are found to collapse in the subsequent
vertically-compressional phase of the strain resulting in a zone or patch of mixed fluid.

The applicability of the super-slip boundary condition in wind-driven quasi- geostrophlc
ocean circulation models is reexamined in the light of a new understanding of the effect of
this boundary condition on energy conservation. A model is constructed with super-slip
on the western boundary and free slip on the other boundaries. Both linear and nonlinear
solutions are presented. Compared to the case with all free-slip boundaries, this new model
gives a more energetic and narrower western boundary current, but otherwise the differences
are not very great. A general criterion for energetically acceptable boundary conditions is
also presented.

The possibility of diminishing the danger of vortices trailing behind aircraft through'
thermal forcing is investigated. It is shown that heating the vortices would have two
beneficial effects. First, it would cause the vortices to descend more rapidly thus clearing
the flight path more quickly. Second, it would cause the vortices to draw closer together,
‘thus greatly increasing the growth rate of the short-wave 1nstab111t1es that can ultimately
destroy the vortices through cross-diffusion. B

It is demonstrated that the growth of the mixing zone generated by Rayleigh-Taylor
instability can be greatly retarded by the application of rotation, at least for low Atwood
number flows for which the Boussinesq approximation is valid. This result is analyzed in
terms of the effect of the Coriolis force on the vortex rings that propel the bubbles of fluid
in the mixing zone.

- The linear dynamics of rotating Raylelgh Bénard convection with rigid, stress-free
boundaries has been thoroughly investigated by Chandrasekhar (1961) who determined the
marginal stability boundary and critical horizontal wavenumbers for the onset of convection
and overstability as a function of the Taylor number T. No closed-form formulae appeared
to exist and the results were tabulated numerically. However, by taking the Rayleigh num-
ber R as independent variable we have found remarkably simple expressions. When the
Prandt! number Pr > Pr. = 0.67659, the marginal stability boundary is described by

the convection curve T(R) = [(R/ Rc)l/ 2. 1] where R, = (27/4)n* is Rayleigh’s famous
critical value for the onset of steady convection in a non-rotating system (' = 0). For



Pr < Pr, the marginal stability boundary is determined by this curve until it intersects
, : 1/2 :
the overstability curve T'(R, Pr) = R [(122“};}' ) / (R/R.)* - %:21]. A simple expression

_for the intersection point is derived and also for the critical horizontal wavenumbers for
which along the marginal stability boundary instability sets in either as steady convection
or overstable oscillations. A simple formula is derived for the frequency of the oscillations.
Further, we show that for high-enough rotation rates, with everything else the same, the
higher the kinematic viscosity of the fluid, the more likely the system is to be unstable,
and the higher thermal diffusivity, the more likely it is to be unstable. Finally, we show
that if the fluid has zero viscosity the system is always unstable, in contradiction to Chan-
drasekhar’s conclusion, and similarly if the thermal diffusivity is zero the system is always -
~ unstable. . :
‘Chandrasekhar (1961) extensively investigated the linear dynamics of Rayleigh-Bénard
convection in an electrically conducting fluid exposed to a uniform vertical magnetic field
and enclosed by rigid, stress-free, upper and lower boundaries. He determined the marginal
stability boundary and critical horizontal wavenumbers for the onset of convection as a
" function of the Chandrasekhar number Q or Hartmann number squared. No closed-form
formulae appeared to exist and the results were tabulated numerically. We have discovered
simple expressions that concisely describe the stability properties of the system. When
the Prandt] number Pr is greater than or equal to the magnetic Prandtl number Pm the
‘marginal stability boundary is described by the curve @ = 72 [R — R\BRY 3] where R is
. the Rayleigh number and R, = (27/4)n* is Rayleigh’s famous critical value for the onset
of stationary convection in the absence of a magnetic field (@ = 0). When Pm > Pr the
marginal stability boundary is determined by this curve until intersected by the curve

1 [Pm?(1+ PT)R 3 (1 + Pr)(Pr+ Pm) 13 Pm?(1+ Pr) 23 R1/5R2/3
Pr? Pr?(1+ Pm) ¢

Q= 72 | Pr(1 + Pm)

- An expression for the intersection point is derived and also for the critical horizontal
wavenumbers for which along the marginal stability boundary instability sets in either
as stationary convection or in an oscillatory fashion. A simple formula is derived for the
frequency of the oscillations. Also we show that in the limit of vanishing magnetic dif-
fusivity, or infinite electrical conductivity, the system is unstable for sufficiently large R,
contrary to Chandrasekhar’s conclusion that the system must be stable for all R in this
limit. Instability in this limit always sets in via overstability. .



